Skip to main content

Mesenchymal Stem Cell Conditioned Media Ameliorate Psoriasis Vulgaris: A Case Study

Mesenchymal Stem Cell Conditioned Media Ameliorate Psoriasis Vulgaris: A Case Study

Abstract

Psoriasis, an autoimmune disease, affects a vast number of peoples around the world. In this report, we discuss our findings about a scalp psoriasis suffering patient with a Psoriasis Scalp Severity Index (PSSI) score of 28, who was treated with Mesenchymal stem cell conditioned media (MSC-CM). Remarkably, complete regression was recorded within a treatment period of one month only (PSSI score of 0). A number of bioactive factors like cytokines and growth factors secreted by MSCs in the conditioned medium are very likely to be the principle molecules which play a vital role in skin regeneration. Treatment using MSC-CM appears to be an effective tool for tackling the psoriatic problem and, thus, may offer a new avenue of therapy which could be considered as an alternative approach to overcome the limitations of the cell-based therapy.

1. Introduction

Psoriasis is a chronic disease thought to be of autoimmune origin which is characterized by patches on the skin and nails. It has been considered as a serious skin related problem affecting approximately 100 million individuals worldwide. About 2% of the world population and 0.44-2.8% of the Indian population were affected by psoriasis in 2016-2017 [12]. Plaque, guttate, inverse, pustular, and erythrodermic are the five major types of psoriasis. Plaque psoriasis, also known as psoriasis vulgaris, is the most common form of the disease (about 90% of the cases) [3] which typically presents with red patches with white scales on top. Psoriasis vulgaris which commonly affects the areas includes scalp, knees, elbows, hands, nails, and feet [4].
Psoriasis, an autoimmune-inflammatory disease probably predisposed due to genetic makeup, is mediated by T-helper cells. Polymorphism, referred to as differences in DNA sequences of a gene, can be incurred by various external agents like chemicals, viruses, or radiation. Polymorphisms in genes of Th2 cytokine/regulatory T-cell (interleukin-10/IL10), Th1/Th17 cytokine (IL-12B and IL-23R), and tumour necrosis factor alpha (TNFAIP3; TNIP1) confer which increased other risks like cardiovascular diseases amongst psoriasis patients [57]. Single nucleotide alteration caused polymorphism in Th1 proinflammatory cytokine gene IL-2 [–330 (G/T)] which has been shown to be associated with greater disease severity in the Indian population [1]. On the other hand, another gene polymorphism occurring in Th-2 cytokine/regulatory T-cell (IL-4) has been shown to be protective against psoriasis [5]. Upregulation in the levels of inflammatory cytokines leads to psoriasis which also can be associated with an increased risk of psoriatic arthritis, lymphomas, cardiovascular risk, Crohn’s disease, and depression [3]. There is no permanent cure for psoriasis, though steroid creams, vitamin D3 cream, ultraviolet light, and immune system suppressing medications (methotrexate) have been in wide use to help control the symptoms with some success [89].
Mesenchymal stem cells (MSCs) are multipotent adult stem cells which have an excellent capacity to proliferate for an extended period of time while maintaining the undifferentiated cell status. The resulting daughter cells can differentiate into various types of cells of host tissues and thus help repair wear and tear incurred [10]. MSCs have a potential to serve as a powerful tool in cell-based therapy due to their tissue regenerative and host immune modulatory capabilities. The functions exhibited by MSCs have attracted a number of scientists and clinicians to investigate the mechanisms involved in their curative and tissue regeneration functions. A very few articles have reported the effectiveness of stromal vascular fraction (SVF)/MSC therapy in curing psoriasis by regulating the immune systems. Lee et al. [11] reported that human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) ameliorate psoriasis-like skin inflammation in mice and have regulatory effects on immune cells including CD4+ T cells and dendritic cells. The first case study on intravenous infusion of SVF into psoriasis patient demonstrated a significant decrease in symptoms with a noticeable difference in skin appearance, psoriasis area, and severity index (PASI) score reduction (from 50.4 to 0.3) [12]. Chen et al. [13] reported that umbilical cord-derived MSC (UC-MSC) infusion effectively reduced psoriasis in human subjects. It was believed that MSCs’ migration into the skin lesions and their immunomodulatory, autoimmune inhibitory, and paracrine effects were the principal factors behind the ameliorative effects. Other recent preclinical studies have shown that stem cell-derived conditioned media (CM) exhibit effective healing of psoriasis-like wounds and thus CM is an alternative for several cell-based therapies [1415]. The paracrine factors including growth factors, chemokines, and cytokines secreted from stem cells play a major role in wound healing [16] and these molecules are present in CM or spent medium harvested from cultured cells [17]. In short, CM can serve as a novel treatment approach in regenerative medicine which has been shown to have a successful outcome in preclinical studies. However, a very few reports are available on the clinical application of CM for treatment of any disease. Based on the principles and importance of CM, the present study was aimed at investigating the effect of MSC-CM on a patient suffering from psoriasis. This study is believed to be the first clinical report on the use of MSC-CM to treat psoriasis.

2. Case Report

2.1. Patient
A 38-year-old male patient, who was suffering from psoriasis vulgaris for 2 years, paid a visit to our centre. Preliminary examination of the patient showed that numerous erythematous plaques with numerous silvery scales present all over the scalp including the area behind the ears. The severity of the disease was assessed to be 28 on Psoriasis Scalp Severity Index (PSSI), calculated by the standard method which combines the severity (erythema, induration, and desquamation) and percentage of affected area.
2.2. Preparation of MSC-Conditioned Media

Adipose tissue was collected from a healthy volunteer by lipoaspiration by a plastic surgeon under the aseptic conditions in the O.T. About 100 ml of fat was aspirated out from the waist area and collected in a sterile container. The fat tissue contacting stem cells was processed in a biosafety laminar airflow chamber. MSCs were isolated from adipose tissue by standard enzymatic digestion method with 0.1% collagenase type I. Following the centrifugation, the resulting pellet was cultured in DMEM medium (Invitrogen, Paisley UK) supplemented with 10% foetal bovine serum (FBS) and 1% penicillin/streptomycin, at 37°C in humidified atmosphere containing 5% CO2. The media were changed after every 3 days. About 5×106 MSCs of passage 2 were seeded in each T175 culture flask (n=10) containing 30 ml of DMEM medium supplemented with 10% FBS. MSCs were confirmed with spindle shaped morphology and free from any contamination (Figure 1) using a phase-contrast microscope. When cells attained 90% confluence at passage 2, the culture media were replaced with serum-free DMEM. After 72 h of incubation, resulting MSC-CM was collected, centrifuged at 2000 rpm for 5 min to remove the cell debris, filtered through 0.22-μm filter, and then concentrated (10 times) by ultrafiltration using centrifugal filtering units with a cut-off value of 3 kDa (Amicon Ultra-15; Millipore, MA), according to the manufacturer’s instructions. The concentrated MSC-CM was aliquoted and stored at -20°C until use. MSC-CM was topically applied on the afflicted areas once a day over a period of one month. Clinical parameters like severity, changes, and clearance of psoriatic plaques were monitored at regular intervals.

ref: https://www.hindawi.com/journals/cridm/2019/8309103/

Comments

Popular posts from this blog

Lab-Grown Blood Stem Cells Produced at Last

After 20 years of trying, scientists have transformed mature cells into primordial blood cells that regenerate themselves and the components of blood. The work, described today in Nature, offers hope to people with leukaemia and other blood disorders who need bone-marrow transplants but can’t find a compatible donor. If the findings translate into the clinic, these patients could receive lab-grown versions of their own healthy cells. One team, led by stem-cell biologist George Daley of Boston Children’s Hospital in Massachusetts, created human cells that act like blood stem cells, although they are not identical to those found in nature. A second team, led by stem-cell biologist Shahin Rafii of Weill Cornell Medical College in New York City, turned mature cells from mice into fully fledged blood stem cells. “For many years, people have figured out parts of this recipe, but they’ve never quite gotten there,” says Mick Bhatia, a stem-cell researcher at McMaster University i...

Mesentery: New organ discovered inside human body by scientists

A new organ has been discovered hiding in plain sight inside the  human body . Known as the mesentery, it was previously thought to be just a few fragmented structures in the digestive system. But scientists have realised it is in fact one, continuous organ.  Although its function is still unclear, the discovery opens up “a whole new area of science,” according to J Calvin Coffey, a researcher at the  University Hospital Limerick  who first discovered it.  "When we approach it like every other organ… we can categorise abdominal disease in terms of this organ," he said.   “Now we have established anatomy and the structure. The next step is the function. If you understand the function you can identify abnormal function, and then you have disease.  “Put them all together and you have the field of mesenteric science.” The research has been published in  The Lancet   medical journa...

Your Guide to Stem Cell Therapy

  Stem cells are quite a boon for the mankind’s welfare. Surely many of you may have come across the benefits and challenges in stem cell therapy ; while some may not. I know many thousands of people are curious to know more about this transforming therapy and likewise they look on to google, the internet basically. I’ll try my best in delivering what’s needed – factual and trustworthy information. Please note that I am not trying to sell you anything nor am I a physician. Trained physicians and doctors are the best sources to get medical advice from. Always consult them because it’s better to be safe than sorry. While we get into it, your support is very much appreciated and we are delighted to help you anytime. Stem cells are cells found in our body just like other cells; what sets them apart is their ability of regenerate and differentiation. Regeneration is the ability of the cell to renew itself after cell division or injury. The later is the ability to specialize in a gener...