Skip to main content

Microbots Deliver Stem Cells in the Body

The astonishing thing about stem cells is that they can be coaxed, in the laboratory, into becoming nearly any kind of cell—from bone marrow to heart muscle. That remarkable capability has for years kept scientists busy tinkering with stem cells and injecting them into animal models in an attempt to grow and replace damaged tissue.  

Such scientists have received a ton of attention in that line of work. But there’s a smaller group of researchers working, to far less fanfare, on a different part of the stem cell challenge: how to deliver those cells to the body’s hard-to-reach places.

Researchers typically deliver stem cells via injection—a needle. But that method can damage healthy tissue, especially when the target is a deep brain structure, or delicate vasculature, or the inner ear.


A group out of Hong Kong announced this week that they had invented a new delivery tool using tiny, magnetically-controlled robots. The cell-carrying machines move noninvasively through the body to a target site and deliver their stem cell cargo.

The researchers, led by Dong Sun, a professor at City University of Hong Kong, demonstrated their device in zebrafish and mice, and reported their success in the journal Science Robotics.

The advance is notable because Sun and his colleagues were able to demonstrate that their robots work in animals. “It’s really uncertain how to make these tiny machines move in living organisms,” says Bradley Nelson, a microroboticist at ETH Zürich, who was not involved in the project. 

Several other groups, including Nelson’s, have demonstrated cell-carrying microbot designs in computer simulations and test tubes, but “in vivo is harder,” he says. 

Sun designed the robots to resemble burrs (the prickly spherical seed pods that cling to clothing). He and his colleagues fabricated them using 3D laser lithography, and coated them in nickel for magnetic actuation, and titanium, for biocompatibility.

The porous, burr-shaped bots hold cells between their spikes. Using magnetic fields, researchers can guide the bots to a site of interest in the body. There, they release the cells, which then proliferate and do their job in regenerating damaged tissue.

Sun and his colleagues tested the mobility of the robots by injecting them into the yolks of anesthetized zebrafish embryos. They navigated them around to specified points inside the yolk while observing that the heart of the zebrafish continued to beat. 

Then they tested whether the robots could carry and release cells. They loaded them up with a voracious type of cell called HeLa, and injected swarms of them into mice. The robots did their job in releasing the cells, which then proliferated in the mice.

A next step would be to load up the microbots with stem cells to test their therapeutic capabilities. One limitation of the design is that the cells are released spontaneously, rather than with a controlled mechanism.

Nelson cautions that Sun’s burr-bots are only one piece in the stem cell puzzle. Far more work must be done before stem cell therapies can be used to actually heal organs or treat disease. 

The cell-carrying bots add to the growing list of medical microrobots designed to perform various jobs in the body, such as delivering drugs or fighting infections.

Source : https://goo.gl/NyCfcT

Comments

  1. Great post, thanks for sharing, That’s a awesome article you posted and very useful for me. Check out more about stem cell therapy clinics.

    ReplyDelete

Post a Comment

Popular posts from this blog

Lab-Grown Blood Stem Cells Produced at Last

After 20 years of trying, scientists have transformed mature cells into primordial blood cells that regenerate themselves and the components of blood. The work, described today in Nature, offers hope to people with leukaemia and other blood disorders who need bone-marrow transplants but can’t find a compatible donor. If the findings translate into the clinic, these patients could receive lab-grown versions of their own healthy cells. One team, led by stem-cell biologist George Daley of Boston Children’s Hospital in Massachusetts, created human cells that act like blood stem cells, although they are not identical to those found in nature. A second team, led by stem-cell biologist Shahin Rafii of Weill Cornell Medical College in New York City, turned mature cells from mice into fully fledged blood stem cells. “For many years, people have figured out parts of this recipe, but they’ve never quite gotten there,” says Mick Bhatia, a stem-cell researcher at McMaster University i...

Mesentery: New organ discovered inside human body by scientists

A new organ has been discovered hiding in plain sight inside the  human body . Known as the mesentery, it was previously thought to be just a few fragmented structures in the digestive system. But scientists have realised it is in fact one, continuous organ.  Although its function is still unclear, the discovery opens up “a whole new area of science,” according to J Calvin Coffey, a researcher at the  University Hospital Limerick  who first discovered it.  "When we approach it like every other organ… we can categorise abdominal disease in terms of this organ," he said.   “Now we have established anatomy and the structure. The next step is the function. If you understand the function you can identify abnormal function, and then you have disease.  “Put them all together and you have the field of mesenteric science.” The research has been published in  The Lancet   medical journa...

Your Guide to Stem Cell Therapy

  Stem cells are quite a boon for the mankind’s welfare. Surely many of you may have come across the benefits and challenges in stem cell therapy ; while some may not. I know many thousands of people are curious to know more about this transforming therapy and likewise they look on to google, the internet basically. I’ll try my best in delivering what’s needed – factual and trustworthy information. Please note that I am not trying to sell you anything nor am I a physician. Trained physicians and doctors are the best sources to get medical advice from. Always consult them because it’s better to be safe than sorry. While we get into it, your support is very much appreciated and we are delighted to help you anytime. Stem cells are cells found in our body just like other cells; what sets them apart is their ability of regenerate and differentiation. Regeneration is the ability of the cell to renew itself after cell division or injury. The later is the ability to specialize in a gener...