Skip to main content

Eye stem cell transplant to treat blindness bolsters retinal function in monkeys

Retinal cell transplants are considered to be an attractive approach for treating blindness. Question is, where do you source the cells? 

An international research team of scientists from Singapore’s Agency for Science, Technology and Research (A*STAR), the Icahn School of Medicine at Mount Sinai in New York and Germany’s Eye Clinic Sulzbach is using a type of stem cell in the eye to grow the pigmented layer of retina that’s essential for vision. The approach is showing promise in monkeys.

The findings suggest that these retinal pigment epithelium (RPE) stem cell-derived RPE, or hRPESC-RPE, may be a useful source for cell replacement therapies to treat RPE-related blindness caused by diseases such as macular degeneration, the researchers suggest. The results are published in the journal Stem Cell Reports.

RPE is a layer of tissue that supports the neurosensory retina and is critical for vision. An estimated 200 million people live with diseases associated with RPE dysfunction, including macular degeneration. Early attempts at RPE replacement used cells from the patient—an approach with limitations—scientists have been searching for treatment using different populations of stem cells.

In 2012, scientists identified a type of adult cell in the RPE that's normally dormant but that can be activated to take on a stem-cell-like state with self-renewing ability. These cells have the potential to differentiate into RPE cells and could therefore be used for RPE replacement therapies, the A*STAR-led team figured.

In their study, the researchers took hRPESC-RPE from donated adult eyes and grew them into RPE monolayers. When transplanted into the eyes of monkeys on a polymer scaffold, the RPE patches stably integrated for at least three months.

The stem cell-derived RPE patches partially took over and were able to support normal light-sensing function, the team showed. What’s more, the method didn’t cause vision-blocking retinal scarring that has been seen with other experimental approaches.

Multiple types of stem cells, including human embryonic stem cells and human-induced pluripotent stem cells, have been proposed as alternative sources for retinal replacement. A team led by Mount Sinai previously used gene transfer to activate a type of retinal cells called Müller glial to adopt stem-cell-like characteristics. The team prompted the cells to divide into light-sensing rod photoreceptor cells in blind mice.

Researchers led by the National Institutes of Health’s National Eye Institute used five chemicals to turn skin cells directly into rod photoreceptors.

The A*STAR-led researchers believe their study demonstrates the potential of using hRPESC-RPE transplants as a treatment for macular degeneration. Further studies are needed to test the method in monkey models of eye disease to gauge the therapeutic effect, the researcher suggested.

If the cells succeed, they could serve as an unlimited resource for human RPE. Because the cells are harvested from human eyes, the researchers suggested establishing hRPESC-RPE donor banks to provide cells that match individual patients so there is no immune rejection.


Source : https://www.fiercebiotech.com/research/eye-stem-cell-transplant-as-potential-blindness-treatment-shows-promise-monkey

Comments

Popular posts from this blog

Lab-Grown Blood Stem Cells Produced at Last

After 20 years of trying, scientists have transformed mature cells into primordial blood cells that regenerate themselves and the components of blood. The work, described today in Nature, offers hope to people with leukaemia and other blood disorders who need bone-marrow transplants but can’t find a compatible donor. If the findings translate into the clinic, these patients could receive lab-grown versions of their own healthy cells. One team, led by stem-cell biologist George Daley of Boston Children’s Hospital in Massachusetts, created human cells that act like blood stem cells, although they are not identical to those found in nature. A second team, led by stem-cell biologist Shahin Rafii of Weill Cornell Medical College in New York City, turned mature cells from mice into fully fledged blood stem cells. “For many years, people have figured out parts of this recipe, but they’ve never quite gotten there,” says Mick Bhatia, a stem-cell researcher at McMaster University i...

Mesentery: New organ discovered inside human body by scientists

A new organ has been discovered hiding in plain sight inside the  human body . Known as the mesentery, it was previously thought to be just a few fragmented structures in the digestive system. But scientists have realised it is in fact one, continuous organ.  Although its function is still unclear, the discovery opens up “a whole new area of science,” according to J Calvin Coffey, a researcher at the  University Hospital Limerick  who first discovered it.  "When we approach it like every other organ… we can categorise abdominal disease in terms of this organ," he said.   “Now we have established anatomy and the structure. The next step is the function. If you understand the function you can identify abnormal function, and then you have disease.  “Put them all together and you have the field of mesenteric science.” The research has been published in  The Lancet   medical journa...

Your Guide to Stem Cell Therapy

  Stem cells are quite a boon for the mankind’s welfare. Surely many of you may have come across the benefits and challenges in stem cell therapy ; while some may not. I know many thousands of people are curious to know more about this transforming therapy and likewise they look on to google, the internet basically. I’ll try my best in delivering what’s needed – factual and trustworthy information. Please note that I am not trying to sell you anything nor am I a physician. Trained physicians and doctors are the best sources to get medical advice from. Always consult them because it’s better to be safe than sorry. While we get into it, your support is very much appreciated and we are delighted to help you anytime. Stem cells are cells found in our body just like other cells; what sets them apart is their ability of regenerate and differentiation. Regeneration is the ability of the cell to renew itself after cell division or injury. The later is the ability to specialize in a gener...