Skip to main content

Tiny Organs Grown From Snake Glands Produce Real Venom

Tiny Organs Grown From Snake Glands Produce Real Venom


Venomous snakes kill or permanently injure more than a half-million people every year. Yet researchers still know surprisingly little about the biology behind venom, complicating efforts to develop treatments. A new advance could help: Researchers have successfully grown miniature organs from snake stem cells in the lab that function just like snake venom glands; they even produce real venom.

“It’s a breakthrough,” says José María Gutiérrez, a snake venom toxicologist at the University of Costa Rica, San José, who was not involved in the study. “This work opens the possibilities for studying the cellular biology of venom-secreting cells at a very fine level, which has not been possible in the past.” The advance could also help researchers study the venom of rare snakes that are difficult to keep in captivity, he says, paving the way for new treatments for a variety of venoms.


Researchers have been creating miniorgans—or organoids—from adult human and mouse stem cells for years. These so-called pluripotent cells are able to divide and grow into new types of tissues throughout the body; scientists have coaxed them into tiny livers, guts, and even rudimentary brains. But scientists hadn’t tried the technique with reptile cells before.

“Nobody knew anything about stem cells in snakes,” says Hans Clevers, a molecular biologist at the Hubrecht Institute and one of the world’s leading organoid scientists. “We didn’t know if it was possible at all.” To find out, Clevers and colleagues removed stem cells from the venom glands of nine snake species—including the cape coral cobra and the western diamondback rattlesnake—and placed them in a cocktail of hormones and proteins called growth factors.

To the team’s surprise, the snake stem cells responded to the same growth factors that work on human and mouse cells. This suggests certain aspects of these stem cells originated hundreds of millions of years ago in a shared ancestor of mammals and reptiles.

Miniature, lab-grown snake venom glands RAVIAN VAN INEVELD/PRINCESS MAXIMA CENTER

By the end of 1 week submerged in the cocktail, the snake cells had grown into little clumps of tissue, a half-millimeter across and visible to the human eye. When the scientists removed the growth factors, the cells began to morph into the epithelial cells that produce venom in the glands of snakes. The miniorgans expressed similar genes as those in real venom glands, the team reports today in Cell.

The snake organoids even produced venom; a chemical and genetic analysis of the secretions revealed that they match the venom made by the real snakes. The labmade venom is dangerous as well: It disrupted the function of mouse muscle cells and rat neurons in a similar way to real venom.

Scientists didn’t know whether the many toxins found in snake venom are made by one general type of cell or specialized, toxin-specific cells. By sequencing RNA in individual cells and examining gene expression, Clevers’s team determined that both real venom glands and organoids contain different cell types that specialize in producing certain toxins. Organoids grown using stem cells from separate regions of the venom gland also produce toxins in different proportions, indicating that location within the organ matters.

The proportions and types of toxins in venom differ among—and even within—species. “That can be problematic for antivenom production,” says study author Yorick Post, a molecular biologist at the Hubrecht Institute. Most antivenoms are developed using one type of venom, so they only work against one type of snakebite.

Now that Clevers and his colleagues created a way to study the complexity of venom and venom glands without handling live, dangerous snakes, they plan to compile a “biobank” of frozen organoids from venomous reptiles around the world that could help researchers find broader treatments. “This would make it much easier to create antibodies,” Clevers says. The biobank could also be a “rich resource for identifying new drugs,” he adds. (Scientists think snake venom may hold the key for treatments against pain, high blood pressure, and cancer, for instance.)

Another new study, published earlier this month in Nature, could also help. Researchers have assembled a near-complete genome for the Indian cobra that could aid drug development. The organoids created by Clevers’s team will provide an “unprecedented” and “incredibly important” new avenue to complement genomic information for venomous snakes, says the senior author of the cobra study, molecular biologist Somasekar Seshagiri of the SciGenom Research Foundation. “They’ve done an amazing job making this work.”

Source : http://bit.ly/2RksdUa

Comments

Popular posts from this blog

Lab-Grown Blood Stem Cells Produced at Last

After 20 years of trying, scientists have transformed mature cells into primordial blood cells that regenerate themselves and the components of blood. The work, described today in Nature, offers hope to people with leukaemia and other blood disorders who need bone-marrow transplants but can’t find a compatible donor. If the findings translate into the clinic, these patients could receive lab-grown versions of their own healthy cells. One team, led by stem-cell biologist George Daley of Boston Children’s Hospital in Massachusetts, created human cells that act like blood stem cells, although they are not identical to those found in nature. A second team, led by stem-cell biologist Shahin Rafii of Weill Cornell Medical College in New York City, turned mature cells from mice into fully fledged blood stem cells. “For many years, people have figured out parts of this recipe, but they’ve never quite gotten there,” says Mick Bhatia, a stem-cell researcher at McMaster University i...

Mesentery: New organ discovered inside human body by scientists

A new organ has been discovered hiding in plain sight inside the  human body . Known as the mesentery, it was previously thought to be just a few fragmented structures in the digestive system. But scientists have realised it is in fact one, continuous organ.  Although its function is still unclear, the discovery opens up “a whole new area of science,” according to J Calvin Coffey, a researcher at the  University Hospital Limerick  who first discovered it.  "When we approach it like every other organ… we can categorise abdominal disease in terms of this organ," he said.   “Now we have established anatomy and the structure. The next step is the function. If you understand the function you can identify abnormal function, and then you have disease.  “Put them all together and you have the field of mesenteric science.” The research has been published in  The Lancet   medical journa...

Your Guide to Stem Cell Therapy

  Stem cells are quite a boon for the mankind’s welfare. Surely many of you may have come across the benefits and challenges in stem cell therapy ; while some may not. I know many thousands of people are curious to know more about this transforming therapy and likewise they look on to google, the internet basically. I’ll try my best in delivering what’s needed – factual and trustworthy information. Please note that I am not trying to sell you anything nor am I a physician. Trained physicians and doctors are the best sources to get medical advice from. Always consult them because it’s better to be safe than sorry. While we get into it, your support is very much appreciated and we are delighted to help you anytime. Stem cells are cells found in our body just like other cells; what sets them apart is their ability of regenerate and differentiation. Regeneration is the ability of the cell to renew itself after cell division or injury. The later is the ability to specialize in a gener...