Skip to main content

Stem cells used to regenerate the external layer of a human heart

A process using human stem cells can generate the cells that cover the external surface of a human heart -- epicardium cells -- according to a multidisciplinary team of researchers.
"In 2012, we discovered that if we treated human stem cells with chemicals that sequentially activate and inhibit Wnt signaling pathway, they become myocardium muscle cells," said Xiaojun Lance Lian, assistant professor of biomedical engineering and biology, who is leading the study at Penn State. Myocardium, the middle of the heart's three layers, is the thick, muscular part that contracts to drive blood through the body.
The Wnt signaling pathway is a group of signal transduction pathways made of proteins that pass signals into a cell using cell-surface receptors.
"We needed to provide the cardiac progenitor cells with additional information in order for them to generate into epicardium cells, but prior to this study, we didn't know what that information was," said Lian. "Now, we know that if we activate the cells' Wnt signaling pathway again, we can re-drive these cardiac progenitor cells to become epicardium cells, instead of myocardium cells."
The group's results, published in Nature Biomedical Engineering, bring them one step closer to regenerating an entire heart wall. Through morphological assessment and functional assay, the researchers found that the generated epicardium cells were similar to epicardium cells in living humans and those grown in the laboratory.
"The last piece is turning cardiac progenitor cells to endocardium cells (the heart's inner layer), and we are making progress on that," said Lian.
The group's method of generating epicardium cells could be useful in clinical applications, for patients who suffer a heart attack. According to the Centers for Disease Control and Prevention, every 43 seconds, someone in the United States has a heart attack
"Heart attacks occur due to blockage of blood vessels," said Lian. "This blockage stops nutrients and oxygen from reaching the heart muscle, and muscle cells die. These muscle cells cannot regenerate themselves, so there is permanent damage, which can cause additional problems. These epicardium cells could be transplanted to the patient and potentially repair the damaged region."
During their study, the researchers engineered the human stem cells to become reporter cells, meaning these cells expressed a fluorescent protein only when they became epicardium cells.
"We treated the cells with different cell signaling molecules, and we found that when we treated them with Wnt signaling activators, they became fluorescent," said Lian.
Another finding, he said, is that in addition to generating the epicardium cells, the researchers also can keep them proliferating in the lab after treating these cells with a cell-signaling pathway Transforming Growth Factor Beta (TGF) inhibitor.
"After 50 days, our cells did not show any signs of decreased proliferation. However, the proliferation of the control cells without the TGF Beta inhibitor started to plateau after the tenth day," said Lian.
The team will continue working together to further their research on regenerating endocardium cells.
"We are making progress on that inner layer, which will allow us to regenerate an entire heart wall that can be used in tissue engineering for cardiac therapy," said Lian.

Source: https://goo.gl/jtV4vs

Comments

Popular posts from this blog

Reforming Hair Loss Treatment With Stem Cells

Losing hair can be very frustrating and insulting, and for years, people have been looking for different methods to treat hair loss effectively. Presently, people mainly rely on hair transplant to treat hair loss problem. However, things are going to change for the better in the near future, with the advent of stem cell therapy for Hair Loss Treatment . Research and tests suggest that this can be a very viable treatment to cure hair loss. The procedure is non-surgical and it helps in stimulating and re-growing the hair follicles. The existing methods vs. the new method of hair loss treatment On one hand where the existing methods of Hair Loss Treatment depends on transplantation of hair follicles from one section to another section of your head, the stem cell therapy, on the other hand, provides an infinite source of stem cells taken from the patient. There is no limitation as far as availability of hair follicles is concerned. This kind of treatment will be the most benefi...

Know About ​Mesenchymal stem cells (MSCs)

 Know About ​Mesenchymal stem cells (MSCs) ​Mesenchymal stem cells (MSCs) are a type of adult stem cell found in several tissues in the body, including bone marrow, adipose tissue, and umbilical cord tissue. They have the ability to differentiate into multiple cell types, such as osteoblasts, chondrocytes, and adipocytes, which are responsible for bone, cartilage, and fat tissue formation, respectively. MSCs have gained significant attention in recent years due to their potential use in regenerative medicine. They have the ability to secrete various growth factors and cytokines that promote tissue repair and regeneration. Additionally, they have immunomodulatory properties that make them attractive candidates for treating autoimmune diseases and reducing inflammation. MSCs have been used in various preclinical and clinical trials to treat a wide range of conditions, including osteoarthritis, cardiovascular disease, and neurological disorders, among others. They can be isolated from...

Stem Cell Therapy for Liver Cirrhosis

 Stem Cell Therapy for Liver Cirrhosis Stem cell therapy is a promising area of research for the treatment of liver cirrhosis. Liver cirrhosis is a progressive condition in which the liver becomes scarred and damaged, leading to a loss of liver function. This can be caused by a variety of factors, including chronic alcohol abuse, viral hepatitis, and non-alcoholic fatty liver disease. Stem cells have the potential to regenerate damaged tissues and organs, including the liver. In the case of liver cirrhosis, stem cells can differentiate into liver cells and promote the growth of healthy tissue, thereby restoring liver function. Web: https://www.giostar.com/Therapy/liver-diseases/ Email: stemcells@giostar.com GIOSTAR Ahmedabad:  +91-7043008890 GIOSTAR Bangalore: +91-6366209990 GIOSTAR Chandigarh: +91-9501768105 #STEM #stemcells #therapy #liver #cirrhosis #giostar #livercirrhosis #liverdisease #giostarindia